
         

(a) (b)

Shape-Based Analysis for Vessel Trajectories

Jiang Wang, Yun Zhou, Xiaofeng Cao, Yilin Wang, Cheng Zhu, and Weiming Zhang
Science and Technology on Information Systems Engineering Laboratory,

National University of Defense Technology, 410073, Changsha, China
wang1988jiang@foxmail.com, mekiddcxf@126.com,

{zhouyun, wangyilin15, zhucheng, zhangweiming}@nudt.edu.cn

ABSTRACT
1In this paper we propose a novel method for modeling the shape 
of vessel trajectories in a manner which may facilitate the appli-
cation of machine learning techniques. This is achieved by trans-
forming the topological feature of vessel trajectories into vectors. 
More specifically, we calculate scale-invariance indicators for ev-
ery vessel trajectory as shape characteristics, and other indicators 
to denote the trajectory area. The proposed method is validated 
using both synthetic trajectories and real-world AIS datasets. We 
demonstrate that it can achieve good time efficiency and may sup-
port vessel trajectory related analysis.

CCS CONCEPTS
• Computing methodologies → Spatial and physical reasoning; 
• Information systems → Spatial databases and GIS.

KEYWORDS
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Scale-invariance

1. INTRODUCTION
Large volumes of data produced by the Automatic Identifica-

tion System (AIS) [1] provide opportunities for studying vessel 
mobility patterns. Some works study the topology or self-similar 
patterns in land traffic data [2, 3]. However, unlike land moving 
objects such as vehicles, human or animals, vessels show different 
move and stop patterns, e.g., move across a wide range on open 
sea and sail along rivers on inner waters. A vessel may follow the 
direction of water flow and wind when engine is turned off. Fig. 1 
shows trajectories of vessels at anchor or moored, in Xiamen Bay 
and the Yangtze River, respectively. Some moored vessels follow 
circle-like trajectories, which are obviously different from vehi-
cles that report overlapping location points when they stop. 

As with the peripheries of clouds and the coastlines [4], we 
observe the majority of real vessel trajectories show a property of 
scale-invariance, namely they are statistical self-similar and 
exhibit fractals like behaviors. This provides a way for modeling
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Figure 1: Trajectories of vessels at anchor or moored. (a) 
Xiamen Bay, China. (b) The Yangtze River (Shanghai, China).

the shape of vessel trajectories, without considering their geogra-
phical locations. Shape-based trajectory analysis could be applied 
to many maritime related tasks, such as: (i) find ship mobility 
patterns on temporal and spatial dimensions; (ii) analyze trajec-
tory shapes derived from ships with diverse types and displace-
ments; (iii) transform massive amounts of raw AIS data into high-
level knowledge by machine learning techniques, e.g., shape-
based trajectory clustering and classification.

In order to automatically and efficiently identify vessel beha-
viors, we quantitatively examine the self-similarity characteristic 
of vessel trajectories from the view of fractal geometry. A novel 
approach is proposed for calculating scale-invariance indicators to 
describe the trajectory shape. We show how the indicators support 
vessel trajectories related analysis. Our contributions are in three 
folds: (i) To our awareness, this is the first work to examine and 
provide theoretical analysis on the self-similarity characteristic of 
vessel trajectories. (ii) An efficient method is developed to extract 
the scale-invariance feature of vessel trajectory shape, which is 
linear to the number of points of trajectory. (iii) We perform 
experiments on synthetic data to validate and on real-world 
datasets to identify vessel behaviors. 

2. TRAJECTORY ROTATION AND PROJEC-
TION

Definition 1. (Major Axis) Given the geometric center O of a 
trajectory, and let dij be the Euclidean distance between points Pi 
and Pj, the major axis MA of the trajectory is defined as OPA, 
where A is calculated by . 

Once the major axis is determined, other axes can be defined 
based on it. For instance, use its perpendicular line as the minor 
axis MI. 

Definition 2. (Trajectory Rotation) A trajectory can be rotated 
around MA or MI or other defined axes, and we call this process 
as trajectory rotation.
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Figure 2: The process of trajectory rotation and projection.

Definition 3. (Projective Trajectory) In the process of trajec-
tory rotation, for each rotation angle , j 1, 2, …, J, there’s a 
projective trajectory on the plane that parallels to the rotation axis. 

Fig. 2 illustrates the process of trajectory rotation and projec-
tion using a synthetic trajectory. In the original coordinate system, 
geometry center O and point A which has the maximal distance 
from O are computed, as shown in Fig. 2(a). Then new coordi-
nates are computed for each point in the new coordinate system, 
and the trajectory is projected onto a horizontal plane, which is 
partitioned by m uniform grids, as shown in Fig. 2(b). Fig. 2(b)-
2(e) show that the trajectory is rotated around OA along the 
direction of counterclockwise. Meanwhile, the non-empty grids 
Ng are counted for each projective trajectory. Points on the 
borderlines are assigned to the right grids.

Figure 3: (a)-(d) Cantor dust, Hilbert curve, a vessel stop trajectory (in circle) and a move trajectory. (e)-(h) log(Ng) vs.  under 
different scales for the 4 datasets, the rotation axis is MI, along the direction of counterclockwise. (i)-(l) log(Ng) vs. log( ) under 
different θs for the 4 datasets, the slope of each line is FD, and  is the grid length under scales.

3. PROPERTY OF SCALE-INVARIANCE
Fig. 3(a)-3(d) show 4 datasets, the first two are the Cantor dust 

and the Hilbert curve; datasets 3 and 4 are real vessel trajectories, 
in which one is a stop and the other is a move. The Cantor dust is 
derived by recursively deleting the middle third of a line segment 
and the Hilbert curve is a space filling curve. Both the two are 
fractals and well known for their self-similar property [5], and 
have fractal dimensions FDCantor 0.63 and FDHilbert 2.

Using rotation and projection method (around MI) to count Ng 
for each dataset under different scales (grid number m), the result-
ing curves are depicted in Fig. 3(e)-3(h). As these curves have 
periodicity with respect to the rotation angle , they are shown in 
θ  (0, /2). The symbol ‘log’ means the natural logarithm in 
this paper (i.e., with base e).

OBSERVATION 1. Like the Cantor dust and the Hilbert curve, 
the log(Ng(θ))-θ curves of a real vessel trajectory under different 
scales have the same trend. 

Namely, if fit log(Ng(θ))-θ curves of a trajectory with S quadr-
atic functions log(Ngsi(θ)) asiθ2+bsiθ+csi, i {1,2,…,S}, then 

as1 as2 … asS, and bs1 bs2 … bsS, they are only differ-
rent in the constants csi. This observation is true for the vast majo-
rity of vessel trajectories, as well as using MA as the rotation axis. 

OBSERVATION 2. For a real vessel trajectory, its projective 
trajectories share a similar fractal dimension FD.

In Fig. 3(i)-3(l), the fitted log(Ng)-log(ϵ) lines of the proje-
ctive trajectories (namely, different θs) of each dataset share a 
similar slope, and this observation is also true for other vessel 
trajectories. Then we assume that the projective trajectories of a 
self-similar trajectory are self-similar and share a same FD.

LEMMA 1. If a trajectory is statistical self-similar, then the 
fitted coefficients a and b have the property of scale-invariance, 
and vice versa.

PROOF. For a statistical self-similar point-set in n-dimensional 
space, the (Hausdorff) fractal dimension FD satisfies the exponent 
of the law [6]: Ng( ) C , (r1< <r2), where C is a 
constant and  is the grid length within a range of scales (r1, r2). 
Then for scales si and sj, (i, j  1, 2, …, S), log(Ng( si) Ng( sj))

FD log( si sj), which is a constant.
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Let log(Ngsi(θ)) asiθ2+bsiθ+csi and log(Ngsj(θ)) asjθ2+bsjθ 
+csj be two fitted quadratic functions under scales si and sj respec-
tively. With the assumption above, we have log(Ngsi(0)  
log(Ngsj(0)) csi csj FD log( si sj), thus (asi asj)θ
(bsi bsj), the right part of the equation is a constant, while θ is a 
variable in ( , ), hence asi asj 0, bsi bsj 0. Therefore, 
the fitted coefficients a as1 as2 … asS, b bs1 bs2 …

bsS. The procedure of this proof can be easily reversed.
Note that the value of the coefficients a, b will change if use 

logarithms with different base. However, this only scales the 
range of them, while we aim at exploring the relative values. For 
instance, if we use the base 2 logarithm and the base 10 logarithm 
on Ng respectively, then alog2 alog10 log2(Ng)  log10(Ng)  
log2(10).

For each rotation axis there’s a coefficient a, i.e., we will get a 
vector {a1,a2,…,aK} if K rotation axes are used. Since log(Ng(θ)) 
has the maximal value when θ 0, theoretically b 0. Thus we 
report {a1,a2,…,aK} as the shape representation, besides, denote 
by L the length of projection of the trajectory on the rotation axis, 
we report {L1,L2,…,LK} to represent the trajectory area.

LEMMA 2. Theoretically, a is in the range of [logbase(cos(1)), 0] 
when base > 1, and in [0, logbase(cos(1))] when 0 < base < 1.

PROOF. For logbase(Ng(θ)) aθ2+bθ+c, let θ 1, since b 0, 
we get a logbase(Ng(1) Ng(0)). If Ng(1) Ng(0), a 0, this
happens when a trajectory equals all its projective trajectories, for
instance, a line segment rotates around its MA. Another bound of
a is logbase(cos(1)), this happens in the cases such as a line 
segment or the Hilbert curve rotate round their MI. For a line 
segment, Ng(1) Ng(0)  Length(θ 1) Length(θ 0)  cos(1); 
for the Hilbert curve, Ng(1) Ng(0) Area(θ 1) Area(θ 0)
cos(1), where Length and Area denote the length of a projective 
line segment and the area that a projective Hilbert curve occupies 
respectively. 

Since we use the natural logarithm in this paper, if the 
log(Ng(θ))-θ curve is well fitted by the quadratic function, then 
log(cos(1)) 0.6156  a  0. However, according  to  our 
experiential knowledge, the minimal a is between 0.8 and 0.9. 
Though a difference exists between theoretical value and observed 
value, generally, our method effectively represents the shape of 
trajectories. If we use R2 (squared correlation coefficient) to 
evaluates the goodness-of-fit, all R2 values with respect to curves 
in Fig. 3(e)-3(h) are above 0 9.

4. PROPOSED ALGORITHM
Algorithm 1 outlines the key process of modeling vessel 

trajectory shape. By rotating a trajectory around each rotation axis, 
it extracts the topological feature of the trajectory with respect to 
each rotation axis, while FD only captures the feature that a 
trajectory whether full in space. 

LEMMA 3. The computation time for the coefficients is linear 
on the number of points N of a trajectory and linear on the grid 
number m. 

PROOF. The time of calculation of the geometry center O, 
finding the MA, and coordinates  transformation  are  all  O(N). 
Given  a grid  number  m, to compute  Ng, we only  go over  the

Algorithm 1: Vessel Trajectory Shape
Input: Trajectory Tr; rotation angles with ascending order {θ1, θ2, …, θJ}, θj 

[ /2, /2]; grids number m; axes number K.
Output: Coefficients {a1,a2,…,aK}.
1: Get geometric center O of Tr, find the major axis MA and determine other K

1 rotation axes;
2: Use MA and MI as the vertical axis and the horizontal axis, O as the origin, 

put Tr into the new coordinates system, and partition the new LMA LMA 
space into m grids;

3: Rotate Tr around each rotation axis according to the rotation angles θj, and 
compute J projective trajectories for each rotation axis;

4: Compute non-empty grids Ng for each projective trajectory;
5: Fit a quadratic function for each rotation axis, report ak.

points of each projective trajectory a few times, and go over the 
grids once. The time of curve fitting is O(1). So the total compu-
tation time is O(N) on N and O(m) on m. 

5. EXPERIMENTS
All experiments were run in the MATLAB R2013b 64-bit 

program on a PC with Intel Core i7–4790 CPU at 3.60 GHz, 32-
GB RAM equipped with Windows 7. Default settings: trajectory 
points N 5000 (linear interpolation was utilised if N was less 
than that); rotation angles: {θ1,θ2,…,θ18}, θj [ /2, /2]; grid 
number m {210, 212, 214} and we took the mean of the results. 
Here we consider two rotation axes: MA and MI, thus we report 
{aMA, aMA} and {LMA, LMI} for each trajectory. 

Dataset. Synthetic data. (i) Polygons (square, rectangle, 
equilateral triangle) and circle. (ii) Sine function y sin(x), x  
[0, 16 ] and spiral curve x t cos(20 t), y t sin(20 t), t  
[0, 1]. (iii) Line segment and overlapping points. (iv) Hilbert 
curve and Cantor dust. (v) Random points, x  [0, 1] and y  [0, 
0 1].  These datasets with different shapes were used to analyze 
and interpret the value of aMA and aMI, and test the computational 
efficiency.

Real AIS data. Our case study is based on two real-world AIS 
datasets: Shanghai Port and Xiamen Bay. Available information 
contains MMSI (Maritime Mobile Service Identity), longitude, 
latitude, speed, course, UTC time, ship name, ship type, ship 
length, ship width and draught. Details are shown in Table 1.

Results on Synthetic Data. Results. Fig. 4 presents the 
synthetic data and results. As the projection of trajectories on MA 
has the longest length, all points in Fig. 4(b) are above the 
diagonal. The way to interpret the MA-MI Graph is as follows:

(1) From left to right, shape varies from line-like to plane-like.
(2) From bottom to up, the space a trajectory occupies varies 

from sparse to dense.
(3) Point lies on the diagonal indicates that LMA LMI.
(4) Points of polygons and circle locate similarly in the graph. 

Points of ‘dense plane’ (datasets 8 and 9) lie on the right up corner 
and line-like (datasets 1 and 2) shapes lie on the left side. aMA and 
aMI of overlapping points dataset are both 0. For sine function and 
spiral curve, when increase x and t respectively, sine function will 
behavior like a line so its point in MA-MI Graph will close to the 
left side, and the point of spiral curve will close to the right side 
and  move along the diagonal.

Efficiency analysis. Table 2 shows the average running time on 
synthetic data under different N and m. We first fixed grid number
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Figure 4: Results on synthetic data. (a) Synthetic data. (b) 
Values of aMA and aMI of each shape.

m to 210 and varied N from 0.1 million to 0.5 million, then we 
fixed N 5000, and varied m from 218 to 226 to examine the 
running time. The results show that the running time is linear on 
the dataset size and grid number in practice.

The Goodness-of-fit. It evaluates if the log(Ng(θ))-θ curves are 
well fitted by the quadratic functions. Table 3 shows the result by 
using R2 as criteria, N 5000, m 210, and the rotation axis is MI. 
Note that a 0 for the overlapping points (dataset 11), so there’s 
no quadratic function. All curves are well fitted except the cases 
of square (dataset 6) and rectangle (dataset 10).

Discovery of Vessel Patterns. Vessel Trajectories were proce-
ssed into moves and stops according to a speed threshold (1 knot). 
Scan all points by time order, a consecutive points set with speed 

1  knot were considered as a move and those with speed  
1 knot were considered as stops.

Shapes vs. Speed. Fig. 5(a)-5(d) show the results on stops and 
moves of Xiamen and Shanghai respectively. Low speed trajec-
tories tend to behavior more like planes, while moves close to line 
segment. Generally, the stops have bigger values of aMA.

Anomaly detection. In Fig. 5(b), two points in blue circle are 
outliers compared to others, and have a relative bigger aMA, 
which means the two move trajectories follow more complicated 
shapes than other move trajectories. In Fig. 5(e), the trajectories 
look very strange and each speed record  8  knots. Maybe the 
ships were engaging in operations related to the port.

Fig. 5(d) shows aMA, aMI and LMA of Xiamen stops. It’s 
interesting that there’re two line-like trajectories with obviously 
bigger LMA values, this means they moved a large range on the 
map with very low speed. In Fig. 5(f), all speed of their points < 
0.1 knots. Since the two trajectories crossed a large distance dur-
ing a relative short time period, this is impossible and may be 
caused by the mechanical failure of AIS system.

6. CONCLUSIONS
In this paper, a new method was proposed for transforming the 

topological feature of trajectory into vectors for shape representa-
tion. This is the first work to examine and provide theoretical 
analysis on the self-similarity characteristic of vessel trajectories. 
It effectively modeling trajectory shape and is efficient enough to 
be performed in practical applications. As many trajectory data-
sets show the property of self-similar, it may be easily extended to 
closed environments, such as finding patterns from car or human 
trajectories.

Table 1. Details of the two AIS datasts.

Dataset Area Time Points Ships

Shanghai

Lon:121.105
~122.5 ° E
Lat: 30.61
~31.885 ° N

2011.10.26 
00:00:00 ~
2011.10.31 
23:59:59

1,190,856 6,526

Xiamen

Lon: 117.724
~118.383 ° E
Lat: 24.350
~24.710 ° N

2015.09.03 
00:00:00 ~
2015.09.12 
23:59:59

613,315 1,216

Table 3. Goodness-of-fit R2.

Dataset 1 2 3 4 5
R2 0.964 0.930 0.998 0.993 0.940

Dataset 6 7 8 9 10
R2 0.399 0.999 0.972 0.937 0.602

Figure 5: Results on stops and moves. (a) Xiamen moves. (b) 
Shanghai moves. (c) Shanghai stops. (d) aMA, aMI and LMA
of Xiamen stops. (e)-(f) Detected anomalies.
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Table 2. Running time vs. N and m. 

N(m 210) 0.1mil 0.2mil 0.3mil 0.4mil 0.5mil 
Time 0.483s 0.999s 1.486s 1.985s 2.474s 

m(N 5000) 218 220 222 224 226 
Time 0.287s 1.184s 8.904s 41.110s 176.70s 


