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Abstract. Lack of relevant data is a major challenge for learning Bayesi-
an networks (BNs) in real-world applications. Knowledge engineering
techniques attempt to address this by incorporating domain knowledge
from experts. The paper focuses on learning node probability tables using
both expert judgment and limited data. To reduce the massive burden
of eliciting individual probability table entries (parameters) it is often
easier to elicit constraints on the parameters from experts. Constraints
can be interior (between entries of the same probability table column)
or exterior (between entries of different columns). In this paper we intro-
duce the first auxiliary BN method (called MPL-EC) to tackle parameter
learning with exterior constraints. The MPL-EC itself is a BN, whose
nodes encode the data observations, exterior constraints and parameters
in the original BN. Also, MPL-EC addresses (i) how to estimate tar-
get parameters with both data and constraints, and (ii) how to fuse the
weights from different causal relationships in a robust way. Experimental
results demonstrate the superiority of MPL-EC at various sparsity lev-
els compared to conventional parameter learning algorithms and other
state-of-the-art parameter learning algorithms with constraints. More-
over, we demonstrate the successful application to learn a real-world
software defects BN with sparse data.

Keywords: BN parameter learning; Monotonic causality; Exterior con-
straints; MPL-EC model

1 Introduction

Bayesian networks have proven valuable in modeling uncertainty and supporting
decision making in practice [1]. However, in many applications there is extremely
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limited data available to learn either the BN structure or probability tables. In
such situations we have to use qualitative knowledge from domain experts in
addition to any quantitative data available [2]. There are numerous recent real-
world applications in which BN models incorporate significant expert judgment
– for example, in medical diagnostics [3, 4], traffic incident detection [5] and
facial action recognition [6]. However, eliciting expert judgment remains a major
challenge.

Directly asking experts to provide quantitative parameter values is time con-
suming and error-prone because the number of parameters increase exponentially
with the number of nodes in the BN. For example, for a node X with 3 states that
has 5 parents (each with 2-states), the probability table for X has 32 columns
and 3 rows, i.e., 96 probability values to be elicited. Since the columns sum to 1,
each column requires only 2 probability values to be elicited, so we consider these
as ‘parameters’ and there are 64 in total. Recent study [7] shows exploring qual-
itative relationships and their generated constraints would greatly reduce the
elicitation burden. However, in applying this method, central challenges include
how to estimate parameters with both data and constraints [8], how to optimally
perform expert judgments elicitation [9], and how to fuse different weights from
different causal relationships and different parent state configurations. These are
crucial to ensure that parameter learning is accurate and effective. Despite the
finding of qualitative relationships published more than twenty years ago, only
limited work [8, 10, 6, 11] has been done on addressing these challenges.

In this paper we assume the BN structure is already defined and only inves-
tigate elicited constraints on parameters to help learn a target BN with sparse
data. The paper extends earlier work [12] in which we introduced an auxiliary
BN method (multinomial parameter learning with constraints, which is also re-
ferred as MPL-C) for learning parameters given expert constraints and limited
data. In that work we considered only parameters constraints restricted to a
single probability table column; for example:

“P(cancer = true|smoker = true) > 0.01)” or

“P(cancer = true|smoker = true) > P(cancer = false|smoker = true)”

In this paper we extend this to exterior parameter constraints (across columns)
like:

“P(cancer = true|smoker = true) > P(cancer = true|smoker = false)”

This kind of exterior parameter constraints are encoded in monotonic causal-
ity between two BN variables [13–15]. Parameter learning with this constraints
normally is solved via establishing a constrained optimization problem [6, 11],
and is restricted to assumptions of binary nodes and convex constraints.

Our contribution in this paper is to extend the original MPL-C model (now
refered to as MPL-EC) to support parameter learning with both data obser-
vations and exterior constraints. In MPL-EC the original parameter estimation
problem converts to a BN inference problem. In this way, our model supports ei-
ther convex or non-convex exterior constraints. Because the MPL-EC is a hybrid
BN (contains continuous, as well as discrete, nodes) the inference is achieved via
a dynamic discretization junction tree (DDJT) algorithm [16]. Some other works



[17–19] also support inference in hybrid BNs with deterministic conditional dis-
tributions. In this paper, we mainly focus on building the hybrid BN model
to support the parameter learning with exterior constraints. Hence, we will not
compare the DDJT with other inference algorithms. In our model, different exte-
rior constraints have different strengths (added as the margin in each inequality
[13]), which has a generative equation that encodes the weights from different
causal relationships and the weights from different parent state configurations.
This is itself an important output for modeling the constraints in a more precise
way. To evaluate the algorithm, we conduct experiments on three standard net-
works, i.e., Weather, Cancer and Asia BNs, comparing against three baselines
and prior learning with constraints methods. Finally, we apply our method to
parameter learning in a real-world software defects BN.

2 Bayesian Networks Parameter Learning

2.1 Preliminaries

A BN consists of a directed acyclic graph (DAG) G = (U,E) (whose nodes U =
{X1, X2, X3, . . . , Xn} correspond to a set of random variables, and whose arcs E
represent the direct dependencies between these variables), together with a set
of probability distributions associated with each variable. For discrete variables3

the probability distribution is described by a node probability table (NPT) that
contains the probability of each value of the variable given each instantiation of
its parent values in G. We write this as P (Xi|pa(Xi)) where pa(Xi) denotes the
set of parents of variable Xi in DAG G. Thus, the BN defines a simplified joint
probability distribution over U given by:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|pa(Xi)) (1)

Let ri denote the cardinality of the space of Xi, and qi represent the car-
dinality of the space of parent configurations of Xi. The k -th probability value
of a conditional probability distribution P (Xi|pa(Xi) = j) can be represented
as θijk = P (Xi = k|pa(Xi) = j), where θijk ∈ θ, 1 ≤ i ≤ n, 1 ≤ j ≤ qi
and 1 ≤ k ≤ ri. Assuming D = {D1, D2, . . . , DN} is a dataset of fully ob-
servable cases for a BN, then Dl is the l -th complete case of D, which is a
vector of values of each variable. The classical maximum likelihood estimation
(MLE) is to find the set of parameters that maximize the data loglikelihood
l(θ|D) = log

∏
l P (Dl|θ). Let Nijk be the number of data records in sample D

for which Xi takes its k -th value and its parent pa(Xi) takes its j -th value. Then
l(θ|D) can be rewritten as l(θ|D) =

∑
ijkNijk log θijk. The MLE seeks to esti-

mate θ by maximizing l(θ|D). In particular, we can get the estimation of each
parameter as follows:

3 For continuous nodes we normally refer to a conditional probability distribution.



θ∗ijk =
Nijk
Nij

(2)

However, for several cases in the unified model, a certain parent-child state
combination would seldom appear, and the MLE learning fails in this situation.
Hence, another classical parameter learning algorithm (maximum a posteriori,
MAP) can be used to mediate this problem via introducing Dirichlet prior:
θ∗ = arg maxθ P (D|θ)P (θ). Therefore, we can derive the following equation for
MAP:

θ∗ijk =
Nijk + αijk − 1

Nij + αij − 1
(3)

Intuitively, one can think of the hyperparameter αijk in Dirichlet prior as an
experts’ guess of the virtual data counts for the parameter θijk. When there is
no related expert judgments, people usually use uniform prior or BDeu prior [2]
in the MAP.

2.2 Constrained Optimization Approach

Although the Dirichlet prior is widely used, it is usually difficult to elicit the nu-
merical hyperparameters from experts. Since the ultimate goal of MAP is to infer
a posterior distribution, people directly introduce expert provided constraints to
regularize the posterior estimation. As discussed above, some related work solves
this problem via constrained optimization (CO). In CO, the expert judgments
are encoded as convex constraints. For example, based on the previous definition,
a convex constraint can be defined as f(θijk) ≤ µijk, where f : Ωθijk → R is
a convex function over θijk, and µijk ∈ [0, 1]. Regarding parameter constraints,
the scores are computed by a constrained optimization approach (i.e., gradient
descent). In detail, for ∀i,j,k θijk, we maximize the score function l(θ|D) subject
to g(θijk) = 0 and f(θijk) ≤ µijk, where the constraint g(θijk) = −1+

∑ri
k=1 θijk

ensures the sum of all the estimated parameters in a probability distribution
is equal to one. To model the strength of the constraints, [6] introduced a
confidence level λijk for the penalty term in the objective function, i.e., let

f(θijk) = θijk, and the penalty term is defined as penalty(θijk) = [µijk − θijk]
−

,

where [x]
−

= max(0,−x). Therefore, the constrained maximization problem can
be rewritten as follows:

arg maxθ l(θ|D)− w
2

∑
ijk λijk · penalty(θijk)2

s.t. ∀i,j,k g(θijk) = 0
(4)

where w is the penalty weight, which is chosen empirically. Obviously, the
penalty varies with the confidence level for each constraint λijk. To ensure the
solutions move towards the direction of reducing constraint violations (the max-
imal score), the score function must be convex, which limits the usage of con-
straints. Meanwhile, because the starting points are randomly generated in gra-
dient descent, this may cause unacceptably poor parameter estimation results
when learning with zero or limited data counts Nijk in the score function.



2.3 Multinomial Parameter Learning with Constraints

Because the basic parameter learning method can be modeled with an auxil-
iary BN model, the constraints can be easily incorporated as the shared child
of the nodes representing the constrained parameters. This auxiliary BN is a
hybrid model (see Figure 1) containing a mixture of discrete and (non-normally
distributed) continuous nodes. Therefore, the parameter estimation problem con-
verts to a BN inference problem, where the data statistics and constraints are
observed, and the target parameters are updated by a dynamic discretization
inference algorithm [16].

N Nk Pk

�������� � 	  
������ 0, 1)   ������(0, 1) 

sum

	r  	1  +	2 +...

Cm

Mr

Fig. 1. The multinomial parameter learning model with constraints (MPL-C) and its
associated distributions. Cm is a constraint node, which encodes constraints within a
NPT column, i.e., C1 : P1 > 0.5 and C2 : P2 > P1

In Figure 1, for simplification, we use Pk (k = 1 to r) to represent the r
parameters of a single column instead of θijk. Similarly, the N (instead of Nij)
represents the data counts of a parent state configuration, and the Nk (instead
of Nijk) represent the data counts for its k -th state under this parent state con-
figuration. Given the above model and its related observations, inference refers
to the process of computing the discretized posterior marginal of unknown nodes
Pk (these are the nodes without evidence). These nodes encode uniform priors,
which prevents the problem of random initial values in constrained optimiza-
tion. After inference, the mean value of Pk will be assigned as the parameter
estimation (i.e., the corresponding NPT cell value). Full details can be found in
[12].

3 The New Method

In this section we first describe (Section 3.1) the type of monotonic causality and
its associated exterior constraints. In Section 3.2 we describe the extended ver-
sion of the auxiliary BN model to incorporate new forms of exterior constraints
provided from expert judgments in order to supplement the MPL-C. Because
there is a state combination explosion problem in the extended BN model, we
describe a novel alternative BN model which keeps the properties of the orig-
inal extended BN but with fewer state combinations. In Section 3.3, a simple



example is presented to show how to build and apply the MPL-EC model for
parameter learning.

3.1 Parameter Constraints

There are two types of node parameter constraints that we consider: interior and
exterior. An interior constraint, which is also called inter-relationship constraint,
constrains two parameters that share the same node index i, and parent state
configuration j (i.e., this is a constraint between values in the same column of a
node probability table). An example of such a constraint is θijk ≥ θijk′ , where
k 6= k′. Interior constraints, which can only be elicited from expert judgment,
were studied extensively in our previous work [12]. We showed in [12] that sig-
nificant improvements to table learning could be achieved from relatively small
number of expert provided interior constraints. However, in many situations it
is possible (and actually more efficient) to elicit constraints between parameters
in different probability table columns. These are the exterior constraints.

Formally, an exterior constraint (also called inter-relationship constraint) is
where two parameters in a relative relationship constraint share the same node
index i, and state index k. Typically an exterior constraint will have the form:
θijk ≥ θij′k where j 6= j′. This kind of constraint is encoded in monotonic
causality which can greatly reduce the burden of expert judgment elicitation.
Before we examine exterior constraints in detail, we need some definitions and
notations:

The positive/negative monotonic causality: For the simplest single mono-
tonic causal connection: X causes Y (X → Y ), the causality can either be

positive or negative. Positive monotonic causality is represented by X
+→ Y

(increasing value of X leads to increases in Y ). Negative monotonic causality

is represented by X
−→ Y (increasing value of X leads to decrease in Y ); for

example, if X is a particular medical treatment and Y is patient mortality.
Let cdf(·) denote the cumulative distribution function. The formal equation

of these two kinds of monotonic causality can be formulated as exterior con-
straints as follows:

X
+→ Y : cdf(P (Y |pa(Y ) = j)) ≥ cdf(P (Y |pa(Y ) = j′))

X
−→ Y : cdf(P (Y |pa(Y ) = j)) ≤ cdf(P (Y |pa(Y ) = j′))

Here both X and Y are ordered categorical variables, j′ and j are inte-
gers satisfying the inequality relationships 0 < j′ < j < |pa(Y )|, where the
|pa(Y )| represents the total number of state configurations in pa(Y ). In X → Y ,
pa(Y ) = X. As we can see, the negative causality represents the opposite causal
relationship compared with positive causality. The model of introducing a sin-
gle positive monotonic causality has been well discussed in previous work [7,
13, 20]. However, real-world BNs usually contain nodes whose parents provide a
mixture of positive and negative causality, as synergistic interactions [11]. Pre-
vious work [11] has addressed this synergy problem at some point, where all
the causalities should either be positive or negative (homogeneous synergies).
Therefore, this work does not allow the synergy relationship have different types



of monotonic causalities, which is referred as heterogeneous synergies. Recently,
researchers [21, 22] introduced a novel canonical gate (refered to as NIN-AND
tree) to model different causal interactions: reinforcing and undermining. How-
ever, this work does not support learning with monotonic constraints and their
margins. Actually, the synergies of different causalities are different when the
causal weights (the confidences of the causal connections) are considered. Pre-
vious studies rarely discussed this problem, and no relevant model has tackled
this issue.

In this paper, we introduce a generative form of the exterior constraint
equation, which support homogeneous/heterogeneous synergies with different
weights. Assume we have a BN with variables U = {Y,X1, X2, . . . , Xn} and the
simple inverted naive structure, which means the variable Y is the shared child
of X1, X2, . . . , Xn. Then our generative exterior constraint is:

{
cdf(P (Y |pa(Y ) = j))− cdf(P (Y |pa(Y ) = j′)) ≥Mjj′ if Mjj′ > 0

cdf(P (Y |pa(Y ) = j))− cdf(P (Y |pa(Y ) = j′)) ≤Mjj′ if Mjj′ < 0
(5)

where Mjj′ =
∑n
i=1M

i
jj′ =

∑n
i=1 wi · cli · εijj′ and 0 < j′ < j < |pa(Y )|. The

Mjj′ represents the overall margin of the synergies, which is the summation of
each single margin M i

jj′ . M
i
jj′ contains three terms: wi ≥ 1 represent the global

weight (the subjective confidence) of the causal relationship Xi → Y , its default
value wi = 1 indicates there is no subjective confidence on the causality; cl is the

causality label (cli = 1 indicates the positive causality Xi
+→ Y ; and cli = −1

represents the negative causality Xi
−→ Y ); εijj′ is the term that describes the

confidence of the inequality introduced by state configuration gap in a causality.
That is to say, the εijj′ is a small positive value proportional to the state config-
uration distance in Xi under two indices j and j′ in pa(Y ) = {X1, X2, . . . , Xn}.

To calculate εijj′ , we need to find the subindices (ind2subi(j) and ind2subi(j
′))

ofXi from the single indices in pa(Y ). Thus we have: εijj′ = ind2subi(j)−ind2subi(j′)
λ·|Xi| .

Here the λ > 1 is the trade-off parameter that controls the effect of the confi-
dence introduced by state configuration gap. Because size |pa(Y )| =

∏n
i=1 |Xi|

increases exponentially with an increase of parent nodes, it would be very ex-
pensive to find all combinations of two indices in |pa(Y )|. Therefore, in this
paper, we only discuss a very simple way to get the combinations. For state con-
figuration size |pa(Y )|, we generate two indices pairs iteratively (“|pa(Y )|, 1”,
“(|pa(Y )| − 1), 2”, ...) until no more pairs can be found.

As shown in equation 5, the type (≥ or ≤) of the exterior constraint is decided
by the value of the margin. The margin is equal to zero (M = 0) only in the
situation where the effects of different causalities are intermediate in the shared
child node. Thus, there is no associated exterior constraints.

Next, we present a simple example of our model: we assume the target vari-
able Y is binary, and it has two binary parents X1 and X2 with “T” and “F”

states. Assume the first causality is positive X1
+→ Y , and the second causality



is negative X2
−→ Y . Therefore, the exterior constraints induced by these two

monotonic causalities can be represented as:
cdf(P (Y |pa(Y ) = 4))− cdf(P (Y |pa(Y ) = 1)) ≥ w1 · ε141 − w2 · ε241
cdf(P (Y |pa(Y ) = 3))− cdf(P (Y |pa(Y ) = 2)) ≥ w1 · ε132 − w2 · ε232
In addition, there is no subjective judgments on their weights, i.e. w1 = w2 =

1. Thus the margin of the first equation equal to zero (w1 · ε141 = w2 · ε241), and
this equation is discarded. Also, because Y is binary, this means y = {yT , yF }.
Therefore, we can have the following exterior constraints based on the above
equation:

P (yT |x1T , x2F )− P (yT |x1F , x2T ) ≥ 1
λ

P (yT |x1T , x2F ) + P (yF |x1T , x2F )− P (yT |x1F , x2T )− P (yF |x1F , x2T ) = 0
Note the equality only happens when y reaches the full range (the biggest)

value in cdf(P (y)).

3.2 The Extended MPL-C Model

In this subsection, we present the extended MPL-C model (MPL-EC) to encode
the constraints in equation 5. For any monotonic causality, we need to introduce
a set of shared children nodes to model the introduced constraints C1, C2, . . . , Cr
(see Figure 2). The size of the constraints set is equal to the number of states
(ranges from 1 to r) in variable Y . In order to simplify the notation, we use
Pk and Pk′ (k/k′ = 1 to r/r′) to represent parameters in Y under different
state configurations of Xi. Therefore, for a single positive monotonic causality

Xi
+→ Y , we have the following arithmetic constraints encoded in the MPL-EC

model to constrain the parameters under two state configurations of Xi (j and
j′): 

C1 : P1 − P1′ ≥ wi · cli · εijj′
C2 : P1 + P2 − P1′ − P2′ ≥ wi · cli · εijj′

C3 : P1 + P2 + P3 − P1′ − P2′ − P3′ ≥ wi · cli · εijj′
...

Cr :
∑r
k=1 Pk −

∑r
k′=1 Pk′ = 0

(6)

In the last exterior constraint equation Cr, two sides of the relative relation-
ship are equal to each other. As we can see there are additional (1 +n) ·n edges
when we introduce n constraint nodes. To reduce the model complexity it must
be replaced by an equivalent model whose structure has a restricted number of
parents.

Previous work has proposed a binary factorization algorithm [23] to improve
the efficiency of the DDJT algorithm. This idea can also be applied here to
produce an alternative model of the straightforward MPL-EC. The new model
is called binary summation model, which introduces an additional 2 · (n − 1)
auxiliary nodes, which only encode the simple sum arithmetic equations to model
the summations of its parents. This model has the same number of edges as the
straightforward model, but the maximal number of parents is fixed as two in this
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(a) The  straightforward model of introducing exterior constraints 
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(b) The binary summation model of introducing exterior constraints

Fig. 2. The straightforward MPL-EC model and its alternative binary summation
model. Due to the space limitation, the MPL-EC model presented here only display
the part for modeling introduced constraints, the left part for modeling multinomial
parameter learning is not displayed, which is the same as MPL-C in Section 2.3.



model. This avoids the parent state combination explosion problem. The detail
of its structure can be found in Figure 2(b).

3.3 A Simple Example

In this subsection, we use a simple example to demonstrate the exterior con-
straints and its generated MPL-EC model. This example encodes the simplest

single positive causal connection: X
+→ Y , where the two nodes involved are

both binary with “T” and “F” states. Therefore, we have two parameter columns
under two parent state instantiations to estimate in Y , which are P (Y |xT ) and
P (Y |xF ). Its MPL-EC model is shown in Figure 3.

The detail of the exterior constraints encoded in the constraint nodes of
MPL-EC is:


S1 : P (yT |xT ) + P (yF |xT )

S1′ : P (yT |xF ) + P (yF |xF )

C1 : P (yT |xT )− P (yT |xF ) ≥ w · cl · ε
C2 : S1 − S1′ ≥ w · cl · ε

(7)

where cl = 1, ε = 1
2λ . according to above definition, and w represents the

subjective confidence whose value can be chosen empirically from the domain
knowledge.

Based on the statistics on the dataset (Figure 3(b)) and previous definition,
we have: NT = 5 (NTF = 2, NTT = 3) under the condition of X = xT , and
NF = 1 (NFF = 0, NFT = 1) in the state initiation of X = xF . Therefore, the
MLE results of Y are P (yT |xT ) = 0.6 and P (yT |xF ) = 1. As we can see, the
estimation of P (yT |xF ) is far away from the ground truth (0.6 and 0.4) due to
the sparse data records under the X = xF condition.

With the above data observations, we now can set the evidence for certain
nodes including constraint nodes (all are set as “True” observations), number of
trials, total numbers, and the summation of all the estimated parameters. Based
on these evidences, the inference in the MPL-EC is to compute the discretized
posterior marginals of each of the unknown nodes yF/T (these are the nodes
without evidence) via DDJT algorithm [16]. This algorithm alternates between
two steps: 1) performing dynamic discretization, which searches and splits the
regions with the highest relative entropy error determined by a bounded K-L
divergence with the current approximated estimates of the marginals; 2) per-
forming junction tree inference, which updates the posterior of the marginals.
At convergence, the mean value of yF/T will be assigned as the final correspond-
ing NPT cell values. After inference with the model in Figure 3(c), we have
P (yT |xT ) = 0.67 and P (yT |xF ) = 0.50, which are much reasonable than the
MLE results.
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Fig. 3. The original BN and its training data in the simple example. (a) The DAG and
its associated NPTs. (b) The 6 data records for the two variables in the BN. (c) The
MPL-EC model for estimating the parameters in Y . The constraint nodes are modeled
as binary (True/False) nodes with expressions that specify the constraint relationships
between its parents. The auxiliary BN model is implemented in AgenaRisk [24], which
supports hybrid BNs containing conditionally deterministic expressions. For example,
the software statement for C1 is: if(P (yT |xT )−P (yT |xF ) ≥ w ·cl ·ε, “True”, “False”).



4 Experiments

The goal of the experiments is to demonstrate the benefits of our method and
show the advantages of using elicited signs of causalities (either from ground
truth or from expert judgment) and their generated exterior constraints to im-
prove the parameter learning performance. We test the method against the con-
ventional learning techniques (MLE and MAP) as well as against the competing
method that incorporates exterior constraints (i.e., the constraint optimization
method). Sections 4.1 and 4.2 describe the details of the experiments. The first
(Section 4.1) uses the well-known Weather, Cancer and Asia BN (their signs are
elicited from the ground truth), while the second (Section 4.2) uses a software
defects BN, and its signs of causalities are elicited from a real expert.

In all cases, we assume that the structure of the model is known and that the
‘true’ NPTs that we are trying to learn are those that are provided as standard
with the models. Obviously, for the purpose of the experiment we are not given
these ‘true’ NPTs but instead are given a number of sample observations which
are randomly generated based on the true NPTs. The experiments consider a
range of sample sizes. In all case the resulting learnt NPTs are evaluated against
the true NPTs by using the K-L divergence measure [25], which is recommended
to measure the distance between distributions. The smaller the K-L divergence
is, the closer the estimated NPT is to the true NPT. If frequency estimated
values are zero in MLE, Laplace smoothing is applied to guarantee they can be
computed. The global weights of all causal relationships are set as default value
wi = 1 in all experiment settings, and the trade-off value λ is set as 10.

4.1 Different Standard BNs Experiments

In the first set of experiments we use three standard models [26–28] that have
been widely used for evaluating different learning algorithms. Based on these BNs
and elicited signs, we compare the performance of different parameter learning
algorithms: MLE, MAP, CO and MPL-EC.

Table 1 shows the structure of each BN and its associated parameter learning
results. The BN structures are presented in the middle column of the table and
annotated with positive/negative signs on their edges. The learning results in
each setting are presented in the last column for each row. In each sub figure, the
x-coordinate denotes the data sample size from 10 to 100, and the y-coordinate
denotes the average K-L divergence for each parameter. For each data sample
size, the experiments are repeated 5 times, and the results are presented with
their mean and standard deviation.

As shown in the last column of Table 1, for all parameter learning meth-
ods, the K-L divergence decreases as expected when the sample size increases.
Specifically, methods of learning with constraints, i.e., CO and MPL-EC always
outperform the conventional MLE algorithm, especially in the sparse data situa-
tions. However, the CO failed to outperform MAP in all data settings of Cancer
and Asia BNs, while the MPL-EC method always achieves the best performance
in all cases for the three different BNs.



Table 1. Learning results for MLE, MAP, CO and MPL-EC in Weather, Cancer and
Asia BN learning problems. Four lines are presented in each sub figure, where the solid
line with circle marker represents the learning results of baseline MLE algorithm, the
dotted line with right-pointing triangle marker represents the learning results of MAP
algorithm, the dotted line with square marker denotes the results of the CO algorithm,
and the bold dash-dot line with diamond marker shows the learning results of the
MPL-EC method.
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4.2 Software Defects BN Experiment

In this section, we consider a very well documented BN model that has been
used by numerous technology companies worldwide [29] to address a real-world
problem: the software defects prediction problem. The idea is to be able to
predict the quality of software in terms of defects found in operation based on
observations that may be possible during the software development (such as
component complexity and defects found in testing). This BN contains eight
nodes: “design process quality (DQ)”, “component complexity (C)”, “defects
inserted (DI)”, “testing quality (T)”, “defects found in testing (DT)”, “residual
defects (R)”, “operation usage (O)” and “defects found in operation (DO)”.
All of them are discrete, which have 3 ordered states: “Low”, “Medium”, and
“High”.

Figure 4(a) represents the structure of the BN, the signs on the edges indi-
cate whether the associate monotonic causalities are positive or negative. These
causalities are elicited from real expert judgments, i.e., as design process quality
(DQ) goes from “Low” to “High”, the defects inserted (DI) go from “High” to
“Low”, this encodes a negative monotonic causality.
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Fig. 4. The Learning results for MLE, MAP, CO and MPL-EC in software defects BN
learning problem: (a) The DAG and real elicited exterior constraints; (b) The details
of the learning results for different training data sample sizes.

Figure 4(b) shows the learning results, where the MPL-EC outperforms all
other algorithms in every scenario. Compared with the state-of-art CO algo-
rithm, our MPL-EC significantly improves the parameter learning performance,
i.e., the MPL-EC outperforms the CO in all training sample sizes, with an overall
47.06% K-L divergence reduction.



5 Conclusions

When data is sparse, purely data driven BN learning is inaccurate. Our frame-
work tackles this problem by leveraging a set of exterior constraints elicited
from experts. Our model is an auxiliary BN, which encodes all the information
(i.e., data observations, parameters we wish to learn, and exterior constraints
encoded in monotonic causalities) in parameter learning. By converting the pa-
rameter learning problem into a Bayesian inference problem, we are able to
perform robust and effective parameter learning even with heterogeneous mono-
tonic causalities and zero data observations in some cases. Our approach applies
with categorical variables, and is robust to any degree of data sparsity. Standard
BNs experiments show that MPL-EC consistently outperforms the conventional
methods (MLE and MAP) and former learning with constraints algorithms. Fi-
nally, experiments with a real-world software defects network show the practical
value of our method. In future work we will investigate the extension to the
continuous variables, and integrating expert constraints with structure learning
so structure can also be refined.

References

1. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Net-
works. CRC Press, New York (2012)

2. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Mach. Learn. 20(3) (1995) 197–243

3. Hutchinson, R.A., Niculescu, R.S., Keller, T.A., Rustandi, I., Mitchell, T.M.: Mod-
eling fMRI data generated by overlapping cognitive processes with unknown onsets
using hidden process models. NeuroImage 46(1) (2009) 87 – 104

4. Yet, B., Perkins, Z., Fenton, N., Tai, N., Marsh, W.: Not just data: A method for
improving prediction with knowledge. J. Biomed. Inform. 48(0) (2014) 28 – 37
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