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• A Bayesian network (BN) structure has been hand-
crafted by domain experts to model a real-world risk 
assessment problem.  

• Only a small amount of data relevant to the model is 
available.  

• The challenge is to build the model parameters by 
exploiting the limited data, expert knowledge and 
knowledge from related domains. 
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• Bayesian network 
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• Constraints and related information. 
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Background - The Idea 

Transfer √ 

Transfer × 



• If we are provided with two BNs, one source network 
(left) and one target (right) network. 
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Background - The Idea 



Source Target 

• We are interested in learning the target network 
parameter with the information in the source. 
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Background - The Idea 



Source Target 
A Priori 

p(𝜽) 

 

Background - The Idea 

• By doing so, we use source data statistics to generate 
the target parameter prior. 
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Background - The Idea 

• We update the target parameters with transferred 
prior, target data and target parameter constraints.  
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Related Work - The Basics 

• Given data 𝐷, we can estimate the parameters 𝜃 
with the help of the Bayes’ Rule: 

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝(𝜃)

𝑝(𝐷)
=

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
               (1) 

– MLE 

• 𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑙𝑜𝑔𝑝(𝐷|𝜃) 

– MAP 

• 𝜃𝑀𝐴𝑃 = argmax
𝜃

(𝑙𝑜𝑔𝑝 𝐷 𝜃 + 𝑙𝑜𝑔𝑝 𝜃 ) 

– Bayesian Estimation (BE) 
• 𝜃𝐵𝐸 = 𝑝 𝜃 𝐷  
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Related Work - Constrained Parameter Learning 

• MLE + Constrained convex optimization (CO) 

– Altendorf et al., 2005; Niculescu et al., 2006; de Campos 
and Ji, 2008; de Campos et al., 2008; Liao and Ji, 2009; de 
Campos et al., 2009; Yang and Natarajan, 2013. 

– argmax
𝜃

(𝑙𝑜𝑔𝑝 𝐷 𝜃 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝜃, 𝐶)) 

• Bayesian Estimation + Constraints 

– Zhou et al., 2014a,b. 

– Multinomial Parameter Learning Model with Constraints 
(MPL-C) 
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Related Work - Constrained Parameter Learning 

• MPL-C model 

– Learning as inference in auxiliary graphical models 

– Coin tossing problem 
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AgenaRisk  
software  

toolkit 



Related Work - Parameter Transfer Learning 

• Many works focus on structure transfer or multi-task 
learning.  

– Niculescu-mizil and Caruana, 2007; Oyen and Lane, 2012; 
Oates et al, 2014. 

• CPTAgg 

– Luis et al., 2010 (a two-step framework). 
• 1) Measure the relatedness of tasks via calculating K-L divergence 

between target and source CPTs; 

• 2) Use a heuristic weighted sum model for aggregating target and 
selected source parameters. 
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Related Work - Summary 

• Either constraints or transferred information could 
improve parameter learning accuracy. 

 

• No generic learning framework could synergistically 
exploit the benefits of both approaches.  
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The Model - MPL-C 
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The Model - MPL-C 
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The actual network parameters 



The Model - MPL-C 
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The total number of trials 

The actual network parameters 
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The total number of trials 

The actual network parameters 

Number of successes for each category 



The Model - MPL-C 
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Constraints 
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Constraints 



The Model - MPL-C 
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The Model - MPL-TC 

• We extend MPL-C model with transferred parameter 
prior. 

 

• Notations and definitions 

– Problem domain  

– BN fragment                                 is a single root node or a 
node with its direct parents in the original BN. 

– Target domain  

– Source domains  
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The Model - MPL-TC 

• Assumptions 

– We don’t assume corresponding structure or variable 
names. 

 

– There are multiple potential sources of varying relevance. 

 

– At least one of the sources is sampled from similar 
distributions as the target. 
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The Model - Three Challenges in Transfer 

• Which source fragments are transferrable? 

– Check fragment compatibility. 

 

• How to deal with variable name mapping? 

– Try all fragment permutation mappings. 

 

• How to quantify the relatedness of each 
transferrable source fragment? 

– Use fitness measurement to find the best one. 
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The Model - 1) Fragment Compatibility 

• For a target fragment i and putative source fragment 
i’, we say they are compatible if they have the same 
structure and state space.  
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The Model - 2) Fragment Permutation Mapping 

• In transfer, we may not know the mapping between 
variable names. 

 

• For example, if target fragment i has parents [a, b] 
and source fragment i’ has parents [d, c], the 
correspondence could be a − d, b − c or b − d, a − c. 

 

• We exhaustively list possible mappings 𝑃𝑚 that map 
states of i to states of i’. 
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The Model - 3) Fitness Measurement 

• Bayesian model comparison for two hypotheses: 

– H1 - The relevance hypothesis that the source and target 
data share a common CPT. 

 

 

 

 

 

– H0 - The independent hypothesis that the source and 
target data have distinct CPTs. 
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The Model - Generate Prior via Bootstrap 

• We use selected best mapping source sample      to 
generate the prior distributions of parameters in the 
target MPL-C model: 

– 1) Use bootstrap method to resample to form a new 
source data sample (a bootstrap sample); 

– 2) Repeat multiple times (100 or 1000); 

– 3) For each of these bootstrap samples, we compute the 
MLE of parameter          ; 

– 4) Fit a TNormal distribution (         ) to the set of MLE 
values. 
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The Model - MPL-TC 
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Transferred informative parameter priors 



The Model - Example 
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The Model - Inference 

 

 

 

 

• Dynamic discretization junction tree (DDJT) algorithm 
(Neil et al., 2007). 
– This algorithm uses the relative entropy error to iteratively 

adjust the discretization in response to new evidence, and 
so achieves more accuracy in the zones of high posterior 
density. 
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Total number of trials 

Number of successes  
observed in the target samples 

Constraints on  
target parameters TNormal sufficient statistics sum =1 

Parameter posteriors in target BN 
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Experiments - Setting 

• Source data - two noises are introduced during 
sampling: 

– `Soft’ noise - generate three source domains with 200, 300 
and 400 sample sizes to simulate continuously varying 
relatedness among a set of sources. 

– `Hard’ noise - choose a portion (20%) of each source’s 
fragments uniformly at random and randomise their 
data/CPTs to make them irrelevant. 

• Target constraints: 
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Experiments - Setting 

• Matlab BNT toolbox 

– https://code.google.com/p/bnt/ 

 

• MPL-TC model is built with AgenaRisk API 

– http://www.agenarisk.com/products/freedownload 
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Experiments - Cancer BN 

• The Cancer BN (Korb and Nicholson, 2010) models 
the interaction between risk factors and symptoms 
for the purpose of diagnosing the most likely 
condition for a patient getting lung cancer.  

Yun et al.          PGM Parameter Learning with Transferred Prior and Constraints           13/07/2015         38/48 

Pollution Smoker 

Cancer 

X-ray Dyspnoea 



Experiments - Varying Data Sizes 
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Experiments - Varying Data Sizes (Log scale) 
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• MPL-TC+5 greatly outperforms the conventional MLE and MAP 
algorithms, and the CPTAgg and MPL-C+5 that only use 
transfer or constraints alone.  
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Experiments - Varying Number of Constraints 
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Experiments - Varying Number of Constraints 
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• Both MPL-TC and MPL-C can be improved with increased 
number of constraints. 

• MPL-TC always beats the method without transfer (MPL-C). 

 



Experiments - Priors vs. Posteriors  
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Experiments - Priors vs. Posteriors  
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MPL-TC(Priors) vs. Ground truth

MPL-TC
+5

(Posteriors) vs. Ground truth

• Compared with MPL-TC(Priors), MPL-TC+5(Posteriors) achieves 
better results with the regularization of introduced 
constraints.  



Experiments - Standard BNs 

• We evaluate the algorithms on 12 standard BNs.  

– http://www.bnlearn.com/bnrepository/ 

 

• Parser bif2bnt 

 

• For each target BN, we generate: 

– 100 training samples; 

– 5 constraints. 
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Experiments - Standard BNs 
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Conclusions  

• Findings 

– This is the first attempt at BN parameter learning with both 
transferred prior and qualitative constraints.  

– Improved learning performance is observed across a range 
of networks.  

• Limitations 

– Only most relevant source is transferred. 

– Data-driven transfer (source selection) may be biased by 
inaccurate target data. 

– Not robust to totally irrelevant sources. 
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