Probabilistic Graphical Models Parameter Learning with Transferred Prior and Constraints

Yun Zhou, Norman Fenton, Timothy Hospedales, Martin Neil

UAI-2015, Amsterdam, The Netherlands

13/07/2015

The Scenario

- A Bayesian network (BN) structure has been handcrafted by domain experts to model a real-world risk assessment problem.
- Only a small amount of data relevant to the model is available.
- The challenge is to build the model parameters by exploiting the limited data, expert knowledge and knowledge from related domains.

Overview

- Background
- Related Work
- The Model
- Experiments
- Conclusions

Background - The Basics

• Bayesian network

 $p(X_1, X_2, X_3, X_4, X_5) = p(X_1)p(X_2|X_1)p(X_3|X_1)p(X_4|X_2, X_3)p(X_5|X_4)$

• Constraints and related information.

• Constraints and related information.

• Constraints and related information.

• If we are provided with two BNs, one source network (left) and one target (right) network.

07/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints

• We are interested in learning the target network parameter with the information in the source.

08/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints

• By doing so, we use source data statistics to generate the target parameter prior.

09/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints

• We update the target parameters with transferred prior, target data and target parameter constraints.

Overview

- Background
- Related Work
- The Model
- Experiments
- Conclusions

Related Work - The Basics

- Given data D, we can estimate the parameters θ with the help of the Bayes' Rule: $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} = \frac{likelihood \cdot prior}{evidence}$ (1)
 - MLE
 - $\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} logp(D|\theta)$
 - MAP
 - $\theta_{MAP} = \underset{\theta}{\operatorname{argmax}}(logp(D|\theta) + logp(\theta))$
 - Bayesian Estimation (BE)
 - $\theta_{BE} = p(\theta|D)$

Related Work - Constrained Parameter Learning

- MLE + Constrained convex optimization (CO)
 - Altendorf et al., 2005; Niculescu et al., 2006; de Campos and Ji, 2008; de Campos et al., 2008; Liao and Ji, 2009; de Campos et al., 2009; Yang and Natarajan, 2013.
 - $\operatorname*{argmax}_{\theta}(logp(D|\theta) + penalty(\theta, C))$
- Bayesian Estimation + Constraints
 - Zhou et al., 2014a,b.
 - Multinomial Parameter Learning Model with Constraints (MPL-C)

Related Work - Constrained Parameter Learning

- MPL-C model
 - Learning as inference in auxiliary graphical models

Coin tossing problem

(a) The original representation

(b) The compact representation

Related Work - Parameter Transfer Learning

- Many works focus on structure transfer or multi-task learning.
 - Niculescu-mizil and Caruana, 2007; Oyen and Lane, 2012;
 Oates et al, 2014.
- CPTAgg
 - Luis et al., 2010 (a two-step framework).
 - 1) Measure the relatedness of tasks via calculating K-L divergence between target and source CPTs;
 - 2) Use a heuristic weighted sum model for aggregating target and selected source parameters.

Related Work - Summary

- Either constraints or transferred information could improve parameter learning accuracy.
- No generic learning framework could synergistically exploit the benefits of both approaches.

Overview

- Background
- Related Work
- The Model
- Experiments
- Conclusions

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 18/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 19/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 20/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 21/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 22/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 23/48

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 24/48

- We extend MPL-C model with transferred parameter prior.
- Notations and definitions
 - Problem domain $\mathcal{D} = \{V, G, D\}$
 - BN fragment $\mathcal{D}_i = \{V_i, G_i, D_i\}$ is a single root node or a node with its direct parents in the original BN.
 - Target domain $\mathcal{D}^t = \{\mathcal{D}_i^t\}$
 - Source domains $\{\boldsymbol{\mathcal{D}}^s\} = \{\{\boldsymbol{\mathcal{D}}^s_{i'}\}\}$

- Assumptions
 - We don't assume corresponding structure or variable names.
 - There are multiple potential sources of varying relevance.
 - At least one of the sources is sampled from similar distributions as the target.

The Model - Three Challenges in Transfer

- Which source fragments are transferrable?
 Check fragment compatibility.
- How to deal with variable name mapping?
 Try all fragment permutation mappings.
- How to quantify the relatedness of each transferrable source fragment?
 - Use fitness measurement to find the best one.

The Model - 1) Fragment Compatibility

For a target fragment *i* and putative source fragment *i*', we say they are *compatible* if they have the same structure and state space.

$$compatible(\boldsymbol{\mathcal{D}}_{i}^{t}, \boldsymbol{\mathcal{D}}_{i'}^{s}) = \begin{cases} 1 & if \ G_{i}^{t} = G_{i'}^{s} \& \theta_{i'}^{s} \in \Omega_{C_{i}^{t}} \\ \& \ dim(\theta_{i}^{t}) = dim(\theta_{i'}^{s}) \\ 0 & otherwise \end{cases}$$

where
$$dim(\theta_i^t) = dim(\theta_{i'}^s)$$
 means $r_i^t = r_{i'}^s$ and $|\pi_i^t| = |\pi_{i'}^s|$

The Model - 2) Fragment Permutation Mapping

- In transfer, we may not know the mapping between variable names.
- For example, if target fragment *i* has parents [a, b] and source fragment *i* has parents [d, c], the correspondence could be a d, b c or b d, a c.
- We exhaustively list possible mappings P_m that map states of *i* to states of *i*'.

The Model - 3) Fitness Measurement

 $(\mathbf{T}\mathbf{T} \mid \mathbf{D} \circ \mathbf{D}^{\dagger})$

- Bayesian model comparison for two hypotheses:
 - H1 The relevance hypothesis that the source and target data share a common CPT.

$$p(H_1|D_{i'}^s, D_i^t) \propto \int p(D_i^t|\theta_i) p(\theta_i|D_{i'}^s, H_1) p(H_1) d\theta_i$$
$$p(D_i^t|D_{i'}^s, H_1) = \sum_{j=1}^{|\pi_i|} \left(\frac{\Gamma(\alpha_{i'j}^s)}{\Gamma(N_{ij}^t + \alpha_{i'j}^s)} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk}^t + \alpha_{i'jk}^s)}{\Gamma(\alpha_{i'jk}^s)} \right)$$

 H0 - The independent hypothesis that the source and target data have distinct CPTs.

$$p(H_0|D_{i'}^s, D_i^t) = 1 - p(H_1|D_{i'}^s, D_i^t)$$

The Model - Generate Prior via Bootstrap

- We use selected best mapping source sample $D_{i'j}^s$ to generate the prior distributions of parameters in the target MPL-C model:
 - 1) Use bootstrap method to resample to form a new source data sample (a bootstrap sample);
 - 2) Repeat multiple times (100 or 1000);
 - 3) For each of these bootstrap samples, we compute the MLE of parameter $\theta^s_{i'jk}$;
 - 4) Fit a *TNormal* distribution ($\zeta_{i'jk}^s$) to the set of MLE values.

Transferred informative parameter priors

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 32/48

The Model - Example

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints

13/07/2015 33/48

The Model - Inference

- Dynamic discretization junction tree (DDJT) algorithm (Neil et al., 2007).
 - This algorithm uses the relative entropy error to iteratively adjust the discretization in response to new evidence, and so achieves more accuracy in the zones of high posterior density.

Overview

- Background
- Related Work
- The Model
- Experiments
- Conclusions

Experiments - Setting

- Source data two noises are introduced during sampling:
 - Soft' noise generate three source domains with 200, 300 and 400 sample sizes to simulate continuously varying relatedness among a set of sources.
 - `Hard' noise choose a portion (20%) of each source's fragments uniformly at random and randomise their data/CPTs to make them irrelevant.
- Target constraints:

 $\min((1+\varepsilon)\theta_{ijk}, 1) \ge \theta_{ijk}^t \ge \max((1-\varepsilon)\theta_{ijk}, 0)$

Experiments - Setting

- Matlab BNT toolbox
 - <u>https://code.google.com/p/bnt/</u>
- MPL-TC model is built with AgenaRisk API
 - <u>http://www.agenarisk.com/products/freedownload</u>

Experiments - Cancer BN

• The Cancer BN (Korb and Nicholson, 2010) models the interaction between risk factors and symptoms for the purpose of diagnosing the most likely condition for a patient getting lung cancer.

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 38/48

Experiments - Varying Data Sizes

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 39/48

Experiments - Varying Data Sizes (Log scale)

 MPL-TC⁺⁵ greatly outperforms the conventional MLE and MAP algorithms, and the CPTAgg and MPL-C⁺⁵ that only use transfer or constraints alone.

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 40/48

Experiments - Varying Number of Constraints

Experiments - Varying Number of Constraints

- Both MPL-TC and MPL-C can be improved with increased number of constraints.
- MPL-TC always beats the method without transfer (MPL-C).

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints

13/07/2015

42/48

Experiments - Priors vs. Posteriors

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 43/48

Experiments - Priors vs. Posteriors

 Compared with MPL-TC(Priors), MPL-TC⁺⁵(Posteriors) achieves better results with the regularization of introduced constraints.

Experiments - Standard BNs

- We evaluate the algorithms on 12 standard BNs.
 - <u>http://www.bnlearn.com/bnrepository/</u>
- Parser bif2bnt
- For each target BN, we generate:
 - 100 training samples;
 - 5 constraints.

Name	Nodes	Edges	Para	MLE	MAP	$MPL-C^{+5}$	CPTAgg	MPL-TC ⁺⁰	MPL-TC ⁺⁵
Alarm	37	46	509	$2.36 \pm 0.10^{*}$	$0.66 {\pm} 0.01 {*}$	$0.61 \pm 0.02*$	$1.61 \pm 0.08*$	0.42 ±0.02	0.42 ±0.01
Andes	223	338	1157	$1.03 \pm 0.06*$	$0.17 \pm 0.01*$	$0.15 \pm 0.01*$	$0.65 \pm 0.05*$	0.08 ±0.00	0.08 ±0.00
Asia	8	8	18	$0.57 \pm 0.16*$	$0.34 \pm 0.04*$	$0.28 \pm 0.03*$	$0.31 {\pm} 0.05 *$	$0.22 \pm 0.02*$	0.18 ±0.03
Cancer	5	4	10	$0.86 \pm 0.35*$	$0.09 \pm 0.04*$	$0.07 \pm 0.05*$	$0.54{\pm}0.11{*}$	$0.05 {\pm} 0.01 {*}$	0.03 ±0.01
Earthquake	5	4	10	$1.50 \pm 0.82*$	$0.15 \pm 0.04*$	$0.13 \pm 0.03*$	$0.35 \pm 0.22*$	0.11 ± 0.01	0.10 ±0.01
Hailfinder	56	66	2656	$2.85 \pm 0.01*$	$0.46 {\pm} 0.00 {*}$	$0.41 \pm 0.00^{*}$	$1.98 {\pm} 0.01 {*}$	0.31 ±0.01	0.31 ±0.01
Hepar2	70	123	1453	$3.18 \pm 0.13*$	$0.33 \pm 0.01*$	$0.33 \pm 0.01*$	$2.58 \pm 0.15*$	$0.30{\pm}0.01$	0.29 ±0.00
Insurance	27	52	984	$1.95 \pm 0.18*$	$1.17 \pm 0.03*$	$1.07 \pm 0.03*$	$0.93 \pm 0.06*$	0.75 ±0.03	0.75 ±0.02
Sachs	11	17	178	$1.74 \pm 0.29*$	$0.78 \pm 0.04*$	$0.71 \pm 0.05*$	$0.98 {\pm} 0.08 {*}$	0.50 ±0.03	0.50 ±0.02
Survey	6	6	21	$0.35 \pm 0.20*$	$0.05 \pm 0.01*$	$0.05 \pm 0.01*$	$0.24 \pm 0.15*$	$0.04{\pm}0.01$	0.03 ±0.01
Weather	4	4	9	0.02 ±0.02	0.03 ± 0.00	0.02 ±0.00	0.02 ±0.00	0.02 ±0.00	0.02 ±0.00
Win95pts	76	112	574	$3.59 {\pm} 0.07 {*}$	$0.81 \pm 0.01*$	$0.78 \pm 0.02*$	$3.20 \pm 0.10*$	$0.67 \pm 0.02*$	0.64 ±0.01

 Table 1: Parameter learning performance (average K-L divergence) in 12 standard Bayesian networks.

Yun et al. PGM Parameter Learning with Transferred Prior and Constraints 13/07/2015 46/48

Overview

- Background
- Related Work
- The Model
- Experiments
- Conclusions

Conclusions

- Findings
 - This is the first attempt at BN parameter learning with both transferred prior and qualitative constraints.
 - Improved learning performance is observed across a range of networks.
- Limitations
 - Only most relevant source is transferred.
 - Data-driven transfer (source selection) may be biased by inaccurate target data.
 - Not robust to totally irrelevant sources.