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Abstract

Probabilistic graphical models, e.g., Markov network and Bayesian network have been well
studied in the past two decades. However, it is still difficult to learn a reliable network
structure, especially with limited data. Recent works found multi-task learning can improve
the robustness of the learned networks by leveraging data from related tasks. In this
paper, we focus on the estimation of Direct Acyclic Graph (DAG) of Bayesian network.
Most existing multi-task or transfer learning algorithms for Bayesian network use the DAG
relatedness as an inductive bias in the optimization of multiple structures. More specifically,
some works firstly find shared hidden structures among related tasks, and then treat them
as the structure penalties in the learning step. However, current works omit the setting that
the shared hidden structure comes from different parts of different DAGs. Thus, in this
paper, the Non-negative Matrix Factorization (NMF) is employed to learn a parts-based
representation to mediate this problem. Theoretically, we show the plausibility of our
approach. Empirically, we show that compared to single task learning, multi-task learning
is better able to positively identify true edges with synthetic data and real-world landmine
data.

Keywords: Multiple DAGs learning, Structure penalties, Non-negative matrix factoriza-
tion

1. Introduction

The discovery of direct acyclic graphs in Bayesian networks is of great interest in scientific
domains such as medical risk analysis and risk assessment. The goal is to understand the
relationships among causes and symptoms in a disease, such as the classical Asia network
(Lauritzen and Spiegelhalter, 1988) which can be used to diagnose the risk of getting cancer
or tuberculosis. However, the data collected is often done in several separate but related
experiments. Therefore, the full dataset is actually composed of several distinct, but related,
subsets of data - called tasks in multi-task learning(Caruana, 1997). For each task there
may not be enough samples to learn a robust model. This problem can be ameliorated
by introducing multi-task learning setting, which leverages information among tasks to
smooth learned models. These smoothed models tend to be more robust to sample noise
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and generalize to holdout data better than models learned individually. Furthermore, in
unsupervised learning, the set of models learned among tasks will share many structure
patterns in common, easing interpretation of the models.

Algorithms for Bayesian network structure learning generally include two broad classes1:
1) score-based algorithm searches over the entire structure space to find a proper one that
describes the observed data the most, it searches the small local changes to the learned
graph structure (typically, the addition, removal or reversal of a single edge); 2) constraint-
based algorithm uses constraints such as independence relations that we may know exist
in the data, to reconstruct the structure. This paper only focus the multi-task setting of
score-based algorithms. Firstly, this algorithm randomly generates initial structures. Then
it defines quality metric (like AIC metric (Akaike, 1998), MDL metric (Bouckaert, 1993),
Bayesian metric, K2 metric (Cooper and Herskovits, 1992), BDe metric (Heckerman et al.,
1995) and etc.), which can be used to measure the quality of these candidate network
structures that reflect the extent to which structure would fit the dataset. After that, the
search algorithms (like K2 (Cooper and Herskovits, 1992), Hill climbing (Buntine, 1996),
Repeated hill climbing, Max-Min hill climbing (Tsamardinos et al., 2006), Simulated an-
nealing (Heckerman et al., 1995), Tabu search, Genetic search (Larrañaga et al., 1996) and
etc.) are applied to identify the structure with the maximal score. For a detailed discussion
and recent finding on structure heuristic search algorithms, please refer to the work (Fan
and Yuan, 2015).

Niculescu-mizil and Caruana (2007) firstly introduced the multi-task setting in learning
Bayesian network structures. For each two tasks, they penalize the edges existed in one
structure but not in the other, and their algorithm searches the best configuration for all the
tasks, which is NP-hard to find the global optimal. Because the key objective in Bayesian
network multi-task learning algorithms is to implement mechanisms for learning the possible
structure underlying the tasks. Finding this shared structure is important because it allows
pooling information across the tasks, a property which is particularly appealing when there
are many tasks but only few data per task. Thus, recent works introduce the ideas of task
relatedness and shared hidden structures (Oyen and Lane, 2012; Oates et al., 2016), which
are used as penalty terms for guiding the estimation of DAGs of different tasks(Figure
1a). However, the limitation is they cannot address the situation that the shared hidden
structure comes from different parts of different DAGs (Figure 1b, the middle DAG consists
of three parts, represented by black, blue and green colored nodes), and no previous works
have addressed the problem that how to accurately use the corresponding part of the shared
hidden structure as a penalty in different learning tasks.

The main challenge, therefore, is to incorporate different parts of the hidden structure
for different learning tasks. The contribution of this paper is threefold. First, we give a novel
formulation of multi-task DAGs discovery that uses the Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999) to find the hidden factors and their weights to each task.
Second, we further show that how to incorporate such hidden factors as the structure
penalties in each DAG estimation. Third, we verify the superiority of our method compared
with conventional DAG learning and state-of-the-art multi-task DAG learning algorithms
on synthetic and real datasets. The experiments indicate that our method could improve

1. For detailed discussions we direct the reader to the books (Koller and Friedman, 2009; Barber, 2012).
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Figure 1: An illustrative example of DAGs (G1, G2, ..., GT ) learning under two conditions:
a) treat the shared hidden structure Gh as a single penalty; b) treat the part of
the shared hidden structure as a penalty.

the learning performance with synthetic and real world data. This also highlight that our
approach can be used for structure transfer learning.

2. Structure Learning of the Bayesian Network

In this section, we review the BN structure learning estimation problem (Cooper and Her-
skovits, 1992; Heckerman et al., 1995) and some previous extensions to multiple datasets/tasks
(Oyen and Lane, 2012; Oates et al., 2016). We also summarize mathematical notations used
throughout the paper in Table 1.

2.1 The Bayesian network model

Let θ denote a set of numerical parameters of the categorical random variables in some set
U , and let G represent a Directed Acyclic Graph (DAG), whose nodes X1, X2, X3, ..., Xn
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Table 1: Mathematical notations used in this paper.
Index Notation Description

1 Gt = (U t, Et) The t-th DAG contains random variable set U t and edge set
Et.

2 U t = {Xt
i}Ki=1 The t-th variable set U t contains K variables.

3 πi The set of parents of variable Xi in DAG G.
4 At = {atij}ni,j=1 A n × n adjacent matrix, whose entry atij = 1 represents an

edge from Xt
i to Xt

j , and atij = 0 represents no edge between
these two nodes.

5 Dt = {dtl}Ll=1 The t-th dataset Dt contains L data records.

correspond to the random variables in V , and whose arcs represent the direct dependencies
between these variables. Here θ = {θijk}, and θijk = p(Xi = k|πi = j) represents a
parameter for which Xi takes its k-th value and its parent set πi takes its j-th value. As
there is a one-to-one correspondence between nodes and variables, the terms ‘node’ and
‘variable’ are used interchangeably in this paper.

The Conditional Probability Table (CPT) associated with every variable contains the
conditional probability of each value of the variable given each instantiation of its parents
in G, which is also referred to as a CPT parameter θijk. A CPT column2 p(Xi|πi = j)
denotes the discrete probability distribution of Xi given the j-th state configuration of its
parents (πi = j).

We call (G, θ) a Bayesian network if (G, θ) satisfies the Local Markov condition - a
variable Xi is conditionally independent of its non-descendants given its parents πi. Taking
advantage of this property, one can obtain a factor representation of the joint probability
distribution over all the random variables. That means a BN G encodes a simplified joint
probability distribution over U given by:

p(X1, X2, ..., Xn) =

n∏
i=1

p(Xi|πi) (1)

Structure learning is the task of automatically learning the DAG of a Bayesian Network
given a dataset of observed cases, which is a NP hard to find the global optimum (Koller
and Friedman, 2009).

2.2 Structure learning

Assuming global/local parameter independence, and parameter/structure modularity, the
search-and-score approach (Maximum likelihood score) makes use of certain heuristics to
find an optimal DAG that describes the observed data Dt the most over the entire space in
the t-th task.

Gt∗ = arg max
Gt∈At

`(Gt, θt, Dt) (2)

2. Note in some other works, e.g., Netica BN software, each CPT row represents a discrete probability
distribution given a parent configuration.
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Here, `(Gt, θt, Dt) is a log-likelihood of how the data fit the distribution given the
structure. In a finite dataset, maximize the log-likelihood will result in a complete graph3,
which states that every pair of nodes is conditionally dependent.

To mediate this problem, the major scope of structure learning studies is how to avoid
this unfavorable result from the maximum likelihood estimation and infer a sparse graph
structure. Specifically, additional term is introduced, i.e. the total number of parame-
ter values (PGt , Akaike’s information criterion (AIC) metric (Akaike, 1998)) encoded in a
DAG. Thus the resulting adjacent matrix has some zero entries owing to the effect of this
regularization term. This estimation problem is defined as:

Gt∗ = arg max
Gt∈At

`(Gt, θt, Dt)− η (3)

where η is the penalty term, η = PGt and η =
PGt

2 · log |Dt| in AIC metric and Minimum
Description Length (MDL) metric (Bouckaert, 1993) respectively. By applying different
hyperparameter (α, aka. equivalent sample size) settings in the Dirichlet prior distribution
of each parameter in a BN, people introduced the K2 metric (α = 1) (Cooper and Herskovits,
1992), BDe metric (α = |Dt| · p(Xt

i = k|πti = j)) (Heckerman et al., 1995) and etc.

Taking advantage of regularization term is useful for improving the estimation perfor-
mance of the resulting DAG. Moreover, if we know the hidden structure Gt

h of the task,
which could be elicited from the domain expert, we can get the DAG that maximize the
data log-likelihood and minimize its difference to Gt

h:

Gt∗ = arg max
Gt∈At

`(Gt, θt, Dt)− η − penalty(Gt, Gt
h) (4)

where the penalty(Gt, Gt
h) penalize the difference between the learned structure G and the

hidden structure Gt
h.

3. Learning a set of DAGs with TRAM

The ordinary single task BN structure learning problem (equation 4) aims to learn one
DAG from a single dataset. The natural extension of this framework to multiple datasets
is introducing the similarity of tasks in DAGs learning. Previous work (Oyen and Lane,
2012) proposed the Task-Relatedness Aware Multi-task (TRAM) learning algorithm by
incorporating the information sharing between different pairs of tasks. Specifically, this
algorithm aims to estimate T structures and associated parameters G1, G2, . . . , GT from T
datasets D1, D2, . . . , DT with additional penalty on task-relatedness penalty(G1:t):

max{Gt∈At}Tt=1

∑T
t=1(`(Gt, θt, Dt)− η − penalty(G1:t))

penalty(G1:t) = It≥2
∏t−1

j=1
1

Ztj
(1− α)∆(Gt,Gj) (5)

where Ztj is the normalize term and ∆(·) evaluate the task relatedness4. By default, ∆(·)
employs the graph edit distance, which is used to measure the minimum number of graph

3. According to the definition of the log-likelihood equation, adding an edge to a network will never reduce
the log-likelihood score.

4. The task relatedness can also be set with empirical domain knowledge.
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edit operations (insert and delete) to transform one graph to another. The α ∈ [0, 1] is
a positive parameter which balances the importance between the strength of fit to data
and the bias toward similar DAGs. When α = 0, the objective function is equivalent to
learning the tasks independently. When α = 1, identical learnt DAGs are the only feasible
estimations. For each task, this algorithm explores all the learnt DAGs in previous tasks,
and uses it to regularize the current estimation. The limitation is different learning order
will produce different learning results. Additionally, in practice, the parameter of ∆(·) needs
to be tuned with specific domain knowledge.

4. Our Method

4.1 Learning a set of DAGs with a single or multiple hidden factor

To mediate this problem, we can introduce an EM-style framework, where T structures and
associated parameters G1, G2, . . . , GT are estimated in each iteration given the T datasets
D1, D2, . . . , DT and expected average DAG in the last iteration. The M step is defined as:

max
{Gt∈At}Tt=1

T∑
t=1

(`(Gt, θt, Dt)− η −∆(Gt, Gt
h)) (6)

where the Gt
h is the shared hidden structure over the entire tasks. In E step, the typical

choice of the shared hidden DAG is Gt
h =

∑T
t=1 Ĝ

t

T , where the (Ĝt ) is estimated DAG of the
t-th task in the last iteration. We refer to this problem (equation 6) as Multi-task Structure
Learning with Single Hidden factor (MSL-SHF) in the remainder of the paper.

When introducing the shared hidden structure, we expect that there may exist more
than one hidden structure among the tasks. Oates et al. (2016) considered the datasets
collected from related but non-identical BNs whose DAGs may differ but are likely to share
many features. Thus they discussed two cases of the hidden structure: known/unknown
Gt

h. In the unknown case, they assume there are K hidden DAGs Gt
h1, G

t
h2, . . . , G

t
hK , and

an analogue of K-means clustering method is applied for finding the shared hidden DAGs.
Thus, the entire estimation problem is reformulated as:

max
{Gt∈At}Tt=1

T∑
t=1

(`(Gt, θt, Dt)− η −∆(Gt, Gt
hk)) (7)

where Gt
hk = arg minGt

hk∈{G
t
hk}

K
k=1

∆(Gt, Gt
hk) is the closest hidden structure to Gt selected

in t-th task. The difference between two DAGs is measured by graph edit distance. Similar
to section 3, the Gt

k can be estimated as the average of the DAGs in the k-th cluster. We
refer to this problem (equation 7) as Multi-task Structure Learning with Multiple Hidden
factor (MSL-MHF) in the remainder of the paper.

4.2 Learning a set of DAGs with parts-based factors

In real world BNs construction, people usually combine some expert knowledge, e.g., BN
idioms (Neil et al., 2000) and BN fragments (Laskey, 2008) to handcraft the final DAG.
Follow this idea, in multi-task setting, there may also exist some parts-based hidden rep-
resentations, which can be used to reconstruct each task. In order to verify this, we can
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introduce the NMF method (Lee and Seung, 1999), which is a matrix factorization algo-
rithm distinguished from the other methods by its use of non-negativity constraints. These
constraints lead to a parts-based representation because they allow only additive, not sub-
tractive, combinations. For these reasons, the non-negativity constraints are compatible
with the intuitive notion of combining parts to form a whole, which is how NMF learns a
parts-based representation.

Given a set of estimated {Gt}Tt=1, we convert each correspond adjacent matrix At into a
column vector vt(n2× 1). Thus, group the column vectors over all the tasks, we can have a
original matrix V = [v1, v2, . . . , vT ] ∈ <n2×T . NMF aims to find two non-negative matrices
W = [w1, w2, . . . , wK ] ∈ <n2×K and H = [h1;h2; . . . ;hK ] ∈ <K×T whose product can well
approximate the original matrix V .

V ≈W ×H (8)

Thus, each data vector vt is approximated by a linear combination of the columns of
W , weighted by the components of H, vt ≈

∑K
k=1wkhk. In reality, we have K � n2 and

K � T. Since relatively few basis vectors are used to represent many data vectors, a good
approximation can only be achieved if the basis vectors discover structure that is latent in
the data. Here, the entire multi-task estimation problem is defined as:

max{Gt∈Ω}Tt=1

∑T
t=1(`(Gt, θt, Dt)− η −∆(Gt, f(Gt

h))

f(Gt
h) = reshape(W ×W tr × vt, n× n)

(9)

where the W tr is the transpose of the matrix W . Here the original input vt is firstly encoded
by the hidden feature vector: W tr × vt. Then a decoder reconstructs the input from the
feature vector: W ×W tr× vt. The final reconstructed input is used as the hidden structure
in each estimation task.

5. Experiments

In this section, we mainly compare single task learning with multi-task learning in order to
better understand their differences in terms of accuracy and robustness of the results.

5.1 Baseline methods and evaluation measurements

In the simulation, we adopt STL, MSL-TRAM, MSL-SHF and MSL-MHF as baseline meth-
ods to compare with MSL with non-negative matrix factorization (MSL-NMF). As the
ground truth DAGs are known in all the tasks. The learning performance is measured by
the graph edit distance between the learnt DAG and the original DAG in each task.

5.2 Learning results of the Asia network

We firstly briefly summarize the data generation procedure for our simulations. For the
synthetic data, we need T different DAGs with same number of variables. We start from
a standard Asia BN, and then randomly insert or delete one edge of this BN to make T
new BNs and their correspond adjacent matrices (A1, A2, . . . , AT ). Meanwhile, the CPTs
for the children of the inserted and deleted edges are updated by marginalizing over the
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deleted parents. Finally, we generate T datasets D1, D2, . . . , DT from the corresponding
CPTs using forwards sampling.

Table 2: Learning results of Asia network under different settings (Samples=200, 350 and
500; T=20 and 50), the learning performances are evaluated by the graph edit
distance.

BN Samples STL MSL-TRAM MSL-SHF MSL-MHF MSL-NMF

Asia20
200 6.0±3.1 4.8±1.1 3.4±1.3 4.4±1.5 4.6±2.5
350 4.5±1.9 4.3±1.0 3.3±1.6 4.0±1.5 3.9±1.4
500 3.8±2.5 3.4±0.7 3.1±1.0 2.5±2.7 1.8±1.5

Asia50
200 5.8±2.8 5.2±1.0 3.9±2.1 3.8±2.2 4.8±2.1
350 4.8±2.5 4.4±0.8 3.7±1.6 3.0±2.0 4.2±1.7
500 4.4±2.9 3.5±0.7 3.6±1.6 3.9±1.7 2.1±1.7

We test two sizes of tasks: Asia20 (T = 20) and Asia50 (T = 50), and construct a
dataset for each task by sampling 500 data samples from the correspond DAG. We then
chose the first 200, 350 and 500 samples to create three data sizes. The edit distance in each
estimation method is reported with the average value over the all tasks. The number of
hidden factor is set as 2 (K = 2) in MSL-MHF and MSL-NMF. The relatedness parameter
in MSL-TRAM is set as 0.5, α = 0.5. We summarize the results in Table 2.

As shown in Table 2, the multi-task algorithms greatly improved the estimation perfor-
mance compared with the conventional single task learning. This verifies the superiority
of multi-task setting in the situation of multiple relevant datasets and limited data. In
Asia network with 20 tasks, our EM-style multi-task DAG estimation algorithms always
win the MSL-TRAM. Specifically, the MSL with single hidden factor has best performance
in dataset sizes 200 and 350, and the MSL-NMF achieves the tremendous improvement
compared with other algorithms in dataset size 500. However, with the increase of the
total number of tasks (in T = 50), only the novel MSL-NMF constantly outperforms the
MSL-TRAM in all data sizes. This verifies the robustness of the MSL-NMF.

5.3 Learning results of the real-world landmine problem

The landmine detection 5 is a binary classification problem, whose objective is to learn a
classifier from the limited labelled actual synthetic-aperture radar data, with the goal of
providing an accurate prediction of existence of landmines. There are 29 landmine fields
and their correspond datasets in different sizes (shown in Table 3). Each data row is a
9-dimensional feature vector.

We treat the binary classification problem in each dataset as a BN learning task. Thus,
we have 29 tasks with different data. We use the proposed MSL-NMF and baselines to learn
29 BNs with training data and infer the output of the landmine class (which is a binary
node that 1 for landmine and 0 for clutter). To simplify the structure learning process, all 9
features are discretized into two values by a standard K-means algorithm. For each dataset
of a task, we use half of data for training and half of data for testing.

5. http://amll.pratt.duke.edu/research/landmine-detection
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Table 3: Number of data rows in each task for the Landmine problem.
Task ID 1 2 3 4 5 6 7 8 9 10
Number of data 690 690 689 508 509 509 510 511 508 509

Task ID 11 12 13 14 15 16 17 18 19 20
Number of data 689 688 508 510 507 445 449 448 449 449

Task ID 21 22 23 24 25 26 27 28 29
Number of data 451 454 447 449 445 448 448 454 449
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(e) Task 20
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6

7 8
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(f) Task 25

Figure 2: DAGs learnt by the MSL-NMF method (due to the space limitation, only 6 of
them are shown here).

To give an intuitive feel for the landmine problem, we present 6 DAGs (Task 1, 5, 10, 15,
20, 25), which are learnt from correspond training data by the MSL-NMF method. Details
can be found in Figure 2. As we can see, each DAG contains 10 nodes, where the node
with red color (node 10) is the landmine class node. Moreover, we can find some shared
fragments/parts in these DAGs, e.g., “node 5 ← node 3 ← node 4” in DAGs 1, 5, 15, 20
and 25, “node 7 ← node 9 → node 8” in DAGs 1, 5, and 15, and isolated node 6 in DAGs
5, 10, 15, 20 and 25. This verifies the existence of shared parts among DAGs in different
tasks.
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Table 4: The average AUC value for 29 tasks in Landmine problem.
Dataset STL MSL-TRAM MSL-SHF MSL-MHF MSL-NMF

Landmine 0.650±0.103 0.652±0.086 0.651±0.099 0.652±0.086 0.657±0.091

The classification performance is measured by the average AUC value over AUCs of all
29 tasks. As shown in Table 4, our MSL-NMF outperforms the baselines and state-of-art
MSL-TRAM. Although the improvement is limited, it is nonetheless impressive given the
difficulty of the problem.

6. Conclusion

When multiple datasets are existed, purely single task BN learning might be less accurate
than learning with the help of other tasks. In this paper, we studied the new problem of
DAGs multi-task estimation with parts-based factors. We proposed an EM-style learning
framework for MSL-SHF and MSL-NMF, and examined their empirical performances at
initial stage. Results show the proposed algorithms are effective at some point. However,
more experiments on real world data are expected in the future to test the proposed method.
Also, it would be interesting to extend this method to solve BN transfer learning problem.
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